Tuesday, May 11, 2010

Bipolar Junction Transistor (BJT)

Previously we discussed about the basic functionality and structure of diode and p-n junction (link to previous blog), now on this blog I summarize some basic facts about transistor.

Bipolar Junction Transistor
A bipolar (junction) transistor (BJT) is a three-terminal electronic device constructed of doped semiconductor material and may be used in amplifying or switching applications. Bipolar transistors are so named because their operation involves both electrons and holes. Charge flow in a BJT is due to bidirectional diffusion of charge carriers across a junction between two regions of different charge concentrations. This mode of operation is contrasted with unipolar transistors, such as field-effect transistors, in which only one carrier type is involved in charge flow due to drift. By design, most of the BJT collector current is due to the flow of charges injected from a high-concentration emitter into the base where they are minority carriers that diffuse toward the collector, and so BJTs are classified as minority-carrier devices.

There are two basic types of bipolar transistor construction, NPN and PNP, which basically describes the physical arrangement of the P-type and N-type semiconductor materials from which they are made. Bipolar Transistors are "CURRENT" Amplifying or current regulating devices that control the amount of current flowing through them in proportion to the amount of biasing current applied to their base terminal. The principle of operation of the two transistor types NPN and PNP, is exactly the same the only difference being in the biasing (base current) and the polarity of the power supply for each type.

The construction and circuit symbols for both the NPN and PNP bipolar transistor are shown above with the arrow in the circuit symbol always showing the direction of conventional current flow between the base terminal and its emitter terminal, with the direction of the arrow pointing from the positive P-type region to the negative N-type region, exactly the same as for the standard diode symbol.

Lets dig in more on NPN transistor. An NPN transistor can be considered as two diodes with a shared anode. In typical operation, the emitter–base junction is forward biased and the base–collector junction is reverse biased. In an NPN transistor, for example, when a positive voltage is applied to the base–emitter junction, the equilibrium between thermally generated carriers and the repelling electric field of the depletion region becomes unbalanced, allowing thermally excited electrons to inject into the base region. These electrons wander (or "diffuse") through the base from the region of high concentration near the emitter towards the region of low concentration near the collector. The electrons in the base are called minority carriers because the base is doped p-type which would make holes the majority carrier in the base.

File:NPN BJT Basic Operation (Active).svg

To minimize the percentage of carriers that recombine before reaching the collector–base junction, the transistor's base region must be thin enough that carriers can diffuse across it in much less time than the semiconductor's minority carrier lifetime. In particular, the thickness of the base must be much less than the diffusion length of the electrons. The collector–base junction is reverse-biased, and so little electron injection occurs from the collector to the base, but electrons that diffuse through the base towards the collector are swept into the collector by the electric field in the depletion region of the collector–base junction. The thin shared base and asymmetric collector–emitter doping is what differentiates a bipolar transistor from two separate and oppositely biased diodes connected in series.

Basic Calculation (NPN Transistor)

We know that the transistor is a "CURRENT" operated device and that a large current (Ic) flows freely through the device between the collector and the emitter terminals. However, this only happens when a small biasing current (Ib) is flowing into the base terminal of the transistor thus allowing the base to act as a sort of current control input. The ratio of these two currents (Ic/Ib) is called the DC Current Gain of the device and is given the symbol of hfe or nowadays Beta, (β). Beta has no units as it is a ratio. Also, the current gain from the emitter to the collector terminal, Ic/Ie, is called Alpha, (α), and is a function of the transistor itself. As the emitter current Ie is the product of a very small base current to a very large collector current the value of this parameter α is very close to unity, and for a typical low-power signal transistor this value ranges from about 0.950 to 0.999.

α and β Relationships
DC Current Gain = Output Current / Input Current = Ic / Ib
α = Ic / Ib, β = Ic / Ie
Ie = Ic + Ib
Vce = Vcb + Vbe

By combining the two parameters α and β we can produce two mathematical expressions that gives the relationship between the different currents flowing in the transistor.

β = α / (1 - α), α = β / (1 + β)

The values of Beta vary from about 20 for high current power transistors to well over 1000 for high frequency low power type bipolar transistors. The equation for Beta can also be re-arranged to make Ic as the subject, and with zero base current (Ib = 0) the resultant collector current Ic will also be zero, (β x 0). Also when the base current is high the corresponding collector current will also be high resulting in the base current controlling the collector current. One of the most important properties of the Bipolar Junction Transistor is that a small base current can control a much larger collector current.

Go to this website for simple real life example to enhance your understanding on transistor. It provides a good illustration on how to calculate the value of resistor, current and voltage in the schematic.

I obtained above information from these sources,
1) Wikipedia Transistor - http://en.wikipedia.org/wiki/Bipolar_junction_transistor
2) Electronics-Tutorial - http://www.electronics-tutorials.ws/transistor/tran_3.html

1 comment:

Post a Comment